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Flow type Reexp | Rejiy

Pipe flow ~ 2000 00
Plane Poiseuille flow || ~ 1000 | 5772
Plane Couette flow ~ 360 00
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3.3. Spectrum of plane Couette and pipe flow. (a) Plane Couette flow
3 = 1,Re = 1000; (b) Pipe flow for &« = 1,n = 1, Re = 5000.
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RE 3.11. Contours of constant growth rate (a) and phase speed (b) for
Couette flow.
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FIGURE 3.12. Contours of constant growth rate (a) and phase speed (b) for pipe
Poiseuille flow.
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What about nonlinearities?

Edge states



Transient growth and bye pass transition

Eigenvalues only give
you the asymptotic
behavior

4

I u(e)u

3

3

Conditional stability — subcritical bifurcation
Trefethen 1993
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Eigenvectors non-
orthogonals:




Eigenvectors non-
orthogonals:
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The projection of u,
on q, is larger than u !!



Eigenvectors non-
orthogonals:

The projection of u u(t) = eMlq a, + et2lq,a,.
on q, is larger than u !! |



Definition of optimal gain of a linear system

Linear system @ = Lg

dt

Initial condition ¢(t = 0) = ¢q

Optimal gain  G(f) = max 4! 7

q0 ‘QO \

Norm




Definition of optimal gain of a linear system

dq

1T,
ar 1
Q(tZO):QO

Matrix exponential

q(t) = exp(Lt)qo



Definition of optimal gain of a linear system

Optimal gain  G(¢r) = max 4!
q0 QO‘

B exp(rL)qo|
— IMN4ax
4o lg0]]

= ||exp(t.L)]
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Associated singular pair :

Avy = o9uy
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Singular value decomposition of a matrix

A=UXVH

AV =UX
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Optimal Final
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Optimal amplification = G(t*) = |lexp(" LI | 5,



Optimal initial condition

propagator input amplification output
Singular value decomposition of a matrix

svd(exp(t*™L)) = UEVH

(") = [[exp(t™L

Optimal initial condition Optimal final condition
left principal right principal
singular vector singular vector
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svd

Singular value decomposition

Syntax

S = svd(A)

[U,S,V] = svd(A)

[__ ] = svd(A,"econ")

[__]1 = svd(A,8)

[_ ] = svd(__ ,outputForm)

Description

S = svd(A) returns the singular values of matrix A in descending order.

[U,S,V] = svd(A) performs a singular value decomposition of matrix A, such the



The svd only computes the L*"2 norm ...

But sometimes the L2 norm of the state vector g has no physical
interpretation!

v -
if q= <77) the L2 norm ||q||22 = j |v|% + |n|? dQ means nothing !
Q

if q= the L"2 norm ||q||2, = f [ul® + [v]* + lw|* + |p|? dQ
Q

L~ TR S i~

means nothing !

_ u
if q= <v> the L"2 norm |iq||*, = j lul? + |v]|? + [w|? dQ
Q

w is the kinetic

energy !

We need to find the proper norm,
which, when measuring q, gives
something physical !




Optimal gain is associated to a norm

Kinetic energy written in v,n form
lau=Dv-IBw and n=1Bu-iaw

1 5 JIMRE
E(t) — 2k2/ﬂ[|ﬁ3v|“+#v|“+|nﬂ dQ

1
=—f )2 + |v]? + [w|? dO
2 Q



Optimal gain is associated to a norm

Kinetic energy written in v,n form
lau=Dv-IBw and n=1Bu-iaw

1 : j
EW) = 5z [ [DF+EM+F] a0

I W7 =D+ 0\ (v
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energy matrix




Definition of optimal gain of a linear system

Cholevski dec. M=F"F

| |

2 Hr-H H
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Optimal gain
F F tL
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Plane Poiseuillle flow

normal
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longitudinal, e’
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Linearly stable until Re=5772, but the transition is
observed experimentally close to Re=1000-2000!



Orr mechanism (2D)

15

Amplification G(¢) for Poiseuille flow with Re = 1000, 00 = 1 (solid line)

« By-pass transition »
Trefethen et al (1993), Buttler & Farrell (1993) , Schmid & Henningson (2001)



Optimal perturbation (here in boundary layer)
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Plane Poiseuillle flow

normal

!

|
f

U(y)

—

.'I?

longitudinal, e’

i)ransverse eifz

Linearly stable until Re=5772, but the transition is
observed experimentally close to Re=1000-2000!



Plane Poiseuille flow
Lift-up mechanism (3D)
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Re=5000, a=0, =1

« By-pass transition »
Trefethen et al (1993), Buttler & Farrell (1993) , Schmid & Henningson (2001)



Lift-up mechanisms

to streaks
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Lift-up mechanism

Streamwise vortices

Schmid & Henningson.(2001)



Lift-up mechanism

Optimal transformation of vortices into streaks

Alfredson & Matsubara (1996), streaky structures in the boudary layer
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Gmax (10—3) tm-a;r « 5}

Plane Poiseuille 0.20 Re? 0.076 Re 0 2.04
Couette 1.18 Re? 0.117Re 35/Re 1.6
Pipe 0.07 Re? 0.048 Re 0 1

Boundary layer 1.50 Re? 0.778 Re 0 0.65




Transition in Cylindrical Pipe Poiseuille flow

Mullin (2008)



Transition in Cylindrical Pipe Poiseuille flow

Disturbance amplitude
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Tourbillon de Lamb-Oseen

Stable lineairement!



TOWARDS AN ELLIPTICAL
STATE

Nonlinear evolution of the optimal perturbation
with initial amplitude below a given threshold...

o C

Re = 1000



TOWARDS AN ELLIPTICAL
STATE

... and now ABOVE the
threshold
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Re = 1000
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TOWARDS AN ELLIPTICAL
STATE

Reconstructed flow

@ o o

Re = 1000
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Tripolar vortices?
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BASIN OF ATTRACTION’S trip
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Going further :

‘.} Check for updates

Analysis of Fluid Systems:
Stability, Receptivity, Sensitivity

Lecture notes from the FLOW-NORDITA Summer School m',lof ﬁﬁmﬂ
on Advanced Instability Methods for Complex Flows, imperial Callege London,

Stockholm, Sweden, 2013 London SW7 2AZ, UK

e-mail: peter schmid@imperial ac.uk

This article presents technigues for the analysis of fluid systems. It adopts an
optimization-based point of view, formulating common concepts such as stability and re-
ceptivity in terms of a cost functional to be optimized subject to constrainis given by the
governing equations. This approach differs significantly from eigenvalue-based methods
that cover the time-asymptotic limit for stability problems or the resonant limit for recep-
tivity problems. Formal substitution of the solution operator for linear time-invariant sys- Stockholm SE-10044, Sweden
tems results in the matrix exponential norm and the resolvent norm as measures 1o assess e-mail: luca@mech.kih.se

the optimal response to initial conditions or external harmonic forcing. The optimization- A
based approach can be extended by introducing adjoint variables that enforce governing
equations and constrainis. This step allows the analysis of far more general fluid systems,
such as time-varying and nonlinear flows, and the investigation of wavemaker regions,

Luca Brandt

Linné FLOW Cenre,

Depariment of Mechanics,

Royal Instilute of Technology (KTH),

iy woyy papeciumor]

(on moodle)

structural sensitivities, and passive control strategies. |[DOI: 10.1115/1.4026375]

1 Introduction and Motivation

Fluid systems are often described and characterized by their sta-
bility or rcc.cptivily behavior, Perturbations of infinitesimal umpli—
tude that grow when superimposed on an equilibrium state of the
flow render the base flow unstable; similarly, a flow that responds
strongly when harmonically forced by an external excitation is
referred to as receptive to this particular driving. Standard mathe-
matical technigues have been devised to describe these fundamen-
tal questions of fluid dynamics: eigenvalue analysis for stability
problems, and the resonance concept for receptivity problems. If
the linearized equations exhibit at least one eigenvalue in the
unstable half-plane, an instability is deduced; if the forcing fre-
quency coincides with one of the eigenvalues of the linearized
equations, a resonance is present in the flow.

Even though these techniques are valuable quantitative tools
for the description of fluid problems, they have been found inad-
equate to account for the full behavior of many fluid systems. A
property of the underlying equations, known as non-normality,
allows for a far richer linear behavior than what can be measured

by cigenvalnee or reennancee alone Ry recaching the anectiome nf

tutorial are available from the journal website and cover the major-
ity of the concepts (and figures) treated in this article,

2 The Governing Equations

Even though the tools and techmiques in this article readily
apply to more complex flows, for sake of clanity we will consider
the flow of an incompressible fluid confined by two walls. Two
cases will be be treated: (i) the pressure-driven flow between two
resting plates yielding a parabolic base-flow velocity profile (i.e.,
plane Poiseuille flow), and (ii) the flow induced by the two plates
moving in-plane in opposite directions by the same speed produc-
ing a linear base-flow velocity profile (i.e., plane Couette flow). In
either case, the base flow is given by the streamwise velocity com-
ponent U(y), that only varies in the normal (plate-to-plate) direc-
tion y. A sketch of the two flow cases, together with the
coordinate system, is given in Fig. 1.

Linearizing the incompressible Navier—Stokes equations about
the base flow U(y) yields the following system of equations:

A A . A1 L

‘aLuse’

(ol SmaE

120 207 960 IWLEBERE . OBEORYZ0/ZI0eGRd-8|
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